Click or drag to resize

MultipleRegressionSvd Method

Overload List
 NameDescription
Public methodStatic memberSvdT(IEnumerableTupleT, T, Boolean) Find the model parameters β such that their linear combination with all predictor-arrays in X become as close to their response in Y as possible, with least squares residuals. Uses a singular value decomposition and is therefore more numerically stable (especially if ill-conditioned) than the normal equations or QR but also slower.
Public methodStatic memberSvdT(IEnumerableValueTupleT, T, Boolean) Find the model parameters β such that their linear combination with all predictor-arrays in X become as close to their response in Y as possible, with least squares residuals. Uses a singular value decomposition and is therefore more numerically stable (especially if ill-conditioned) than the normal equations or QR but also slower.
Public methodStatic memberSvdT(MatrixT, MatrixT) Find the model parameters β such that X*β with predictor X becomes as close to response Y as possible, with least squares residuals. Uses a singular value decomposition and is therefore more numerically stable (especially if ill-conditioned) than the normal equations or QR but also slower.
Public methodStatic memberSvdT(MatrixT, VectorT) Find the model parameters β such that X*β with predictor X becomes as close to response Y as possible, with least squares residuals. Uses a singular value decomposition and is therefore more numerically stable (especially if ill-conditioned) than the normal equations or QR but also slower.
Public methodStatic memberSvdT(T, T, Boolean) Find the model parameters β such that their linear combination with all predictor-arrays in X become as close to their response in Y as possible, with least squares residuals. Uses a singular value decomposition and is therefore more numerically stable (especially if ill-conditioned) than the normal equations or QR but also slower.
Top
See Also