MultipleRegressionSvdT(IEnumerableValueTupleT, T, Boolean) Method |
Find the model parameters β such that their linear combination with all predictor-arrays in X become as close to their response in Y as possible, with least squares residuals.
Uses a singular value decomposition and is therefore more numerically stable (especially if ill-conditioned) than the normal equations or QR but also slower.
Namespace: Altaxo.Calc.LinearRegressionAssembly: AltaxoCore (in AltaxoCore.dll) Version: 4.8.3179.0 (4.8.3179.0)
Syntax public static T[] Svd<T>(
IEnumerable<(T[] , T )> samples,
bool intercept = false
)
where T : struct, new(), IEquatable<T>, IFormattable
Parameters
- samples IEnumerableValueTupleT, T
- Sequence of predictor-arrays and their response.
- intercept Boolean (Optional)
- True if an intercept should be added as first artificial predictor value. Default = false.
Type Parameters
- T
[Missing <typeparam name="T"/> documentation for "M:Altaxo.Calc.LinearRegression.MultipleRegression.Svd``1(System.Collections.Generic.IEnumerable{System.ValueTuple{``0[],``0}},System.Boolean)"]
Return Value
TBest fitting list of model parameters β for each element in the predictor-arrays.
See Also