Click or drag to resize

MultipleRegressionSvdT(MatrixT, MatrixT) Method

Find the model parameters β such that X*β with predictor X becomes as close to response Y as possible, with least squares residuals. Uses a singular value decomposition and is therefore more numerically stable (especially if ill-conditioned) than the normal equations or QR but also slower.

Namespace: Altaxo.Calc.LinearRegression
Assembly: AltaxoCore (in AltaxoCore.dll) Version: 4.8.3261.0 (4.8.3261.0)
Syntax
C#
public static Matrix<T> Svd<T>(
	Matrix<T> x,
	Matrix<T> y
)
where T : struct, new(), IEquatable<T>, IFormattable

Parameters

x  MatrixT
Predictor matrix X
y  MatrixT
Response matrix Y

Type Parameters

T

[Missing <typeparam name="T"/> documentation for "M:Altaxo.Calc.LinearRegression.MultipleRegression.Svd``1(Altaxo.Calc.LinearAlgebra.Matrix{``0},Altaxo.Calc.LinearAlgebra.Matrix{``0})"]

Return Value

MatrixT
Best fitting vector for model parameters β
See Also