Hyperbolic Class |
public static class Hyperbolic
The Hyperbolic type exposes the following members.
Name | Description | |
---|---|---|
![]() ![]() | Acosh | |
![]() ![]() | Asinh | |
![]() ![]() | Atanh | |
![]() ![]() | Cosh | Hyperbolic cosine, i.e. (Exp(x)+Exp(-x))/2. |
![]() ![]() | Coth | Hyperbolic cotangent, i.e. Cosh(x)/Sinh(x). |
![]() ![]() | Csch | Hyperbolic cosecant, i.e. 1/Sinh(x) = 2/(Exp(x)-Exp(-x)). |
![]() ![]() | CschTimesX | Hyperbolic cosecant, multiplied with the argument x, i.e. x*Csch(x) = x/Sinh(x). |
![]() ![]() | ExpMinusOne | Calculates Exp(x)-1 with better accuracy around x=0. |
![]() ![]() | Langevin | Langevin function, which is defined as Coth(x)-1/x. |
![]() ![]() | Log1p | Calculates the natural logarithm of 1+x with better accuracy for very small x. |
![]() ![]() | OneMinusExp | Calculates 1-Exp(x) with better accuracy around x=0. |
![]() ![]() | Sech | Hyperbolic cosecant, i.e. 1/Cosh(x) = 2/(Exp(x)+Exp(-x)). |
![]() ![]() | Sinh | Hyperbolic sine, i.e. (Exp(x)-Exp(-x))/2. |
![]() ![]() | SinhAxBxTimesCschX | Calculates [Exp(a x)-Exp(b x)]/[Exp(x)-Exp(-x)]. |
![]() ![]() | Tanh | Hyperbolic tangent, i.e. Sinh(x)/Cosh(x). |