Hyperbolic Methods |
The Hyperbolic type exposes the following members.
| Name | Description | |
|---|---|---|
| Acosh | ||
| Asinh | ||
| Atanh | ||
| Cosh | Hyperbolic cosine, i.e. (Exp(x)+Exp(-x))/2. | |
| Coth | Hyperbolic cotangent, i.e. Cosh(x)/Sinh(x). | |
| Csch | Hyperbolic cosecant, i.e. 1/Sinh(x) = 2/(Exp(x)-Exp(-x)). | |
| CschTimesX | Hyperbolic cosecant, multiplied with the argument x, i.e. x*Csch(x) = x/Sinh(x). | |
| ExpMinusOne | Calculates Exp(x)-1 with better accuracy around x=0. | |
| Langevin | Langevin function, which is defined as Coth(x)-1/x. | |
| Log1p | Calculates the natural logarithm of 1+x with better accuracy for very small x. | |
| OneMinusExp | Calculates 1-Exp(x) with better accuracy around x=0. | |
| Sech | Hyperbolic cosecant, i.e. 1/Cosh(x) = 2/(Exp(x)+Exp(-x)). | |
| Sinh | Hyperbolic sine, i.e. (Exp(x)-Exp(-x))/2. | |
| SinhAxBxTimesCschX | Calculates [Exp(a x)-Exp(b x)]/[Exp(x)-Exp(-x)]. | |
| Tanh | Hyperbolic tangent, i.e. Sinh(x)/Cosh(x). |