Gamma |
public class GammaRelated
The GammaRelated type exposes the following members.
Name | Description | |
---|---|---|
GammaRelated | Initializes a new instance of the GammaRelated class |
Name | Description | |
---|---|---|
Beta(Double, Double) | Beta(a,b) calculates the complete beta function for double precision arguments a and b using Exp(LnBeta(a,b)). | |
Beta(Double, Double, Boolean) | Beta(a,b) calculates the complete beta function for double precision arguments a and b using Exp(LnBeta(a,b)). | |
BetaI(Double, Double, Double) | BetaI(x,a,b) calculates the double precision incomplete beta function. BetaI(x,a,b) = Integral(0,x) t**(a-1) (1-t)**(b-1) dt | |
BetaI(Double, Double, Double, Boolean) | BetaI(x,a,b) calculates the double precision incomplete beta function. BetaI(x,a,b) = Integral(0,x) t**(a-1) (1-t)**(b-1) dt | |
BetaIR(Double, Double, Double) |
BetaIR(x,a,b) calculates the double precision incomplete beta function ratio.
C# B_x(a,b) Integral(0,x) t**(a-1) (1-t)**(b-1) dt I_x(a,b) = --------- = --------------------------------------- B(a,b) B(a,b) | |
BetaIR(Double, Double, Double, Boolean) |
BetaIR(x,a,b) calculates the double precision incomplete beta function ratio.
C# B_x(a,b) Integral(0,x) t**(a-1) (1-t)**(b-1) dt I_x(a,b) = --------- = --------------------------------------- B(a,b) B(a,b) | |
BetaRegularized |
BetaRegularized(x,a,b) calculates the double precision incomplete beta function ratio.
C# B_x(a,b) Integral(0,x) t**(a-1) (1-t)**(b-1) dt I_x(a,b) = --------- = --------------------------------------- B(a,b) B(a,b) | |
Binomial | Gives the binomial coefficient ( n over m). | |
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object) | |
Fac(Int32) | Fac(n) calculates the double precision factorial for the integer argument n. | |
Fac(Int32, Boolean) | Fac(n) calculates the double precision factorial for the integer argument n. | |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object) | |
Gamma(Complex) | Complex64T Gamma function. | |
Gamma(Double) | Gamma(x) calculates the double precision complete Gamma function for double precision argument x. | |
Gamma(Complex, Boolean) | Complex64T Gamma function. | |
Gamma(Double, Boolean) | Gamma(x) calculates the double precision complete Gamma function for double precision argument x. | |
Gamma(Double, Double) | Evaluate the complementary incomplete Gamma function Gamma(a,z0) = integral from z0 to infinity of exp(-t) * t**(a-1) The order of parameters is the same as the Mathematica function Gamma[a,z0]. Gamma(a,z0) is evaluated for arbitrary real values of A and for non-negative values of x (even though Gamma is defined for z0 < 0.0), except that for z0 = 0 and a <= 0.0, Gamma is undefined. | |
Gamma(Double, Double, Boolean) | Evaluate the complementary incomplete Gamma function Gamma(a,z0) = integral from z0 to infinity of exp(-t) * t**(a-1) The order of parameters is the same as the Mathematica function Gamma[a,z0]. Gamma(a,z0) is evaluated for arbitrary real values of A and for non-negative values of x (even though Gamma is defined for z0 < 0.0), except that for z0 = 0 and a <= 0.0, Gamma is undefined. | |
GammaI | Evaluate the incomplete gamma function defined by GammaI = integral from t = 0 to x of exp(-t) * t**(a-1.0) GammaI(x,a) is evaluated for positive values of a and non-negative values of x. A slight deterioration of 2 or 3 digits accuracy will occur when GammaI is very large or very small, because logarithmic variables are used. The function and both arguments are double precision. | |
GammaIC(Double, Double) | Evaluate the complementary incomplete Gamma function GammaIC(x,a) = integral from x to infinity of exp(-t) * t**(a-1) GammaIC(x,a) is evaluated for arbitrary real values of A and for non-negative values of x (even though GammaIC is defined for x < 0.0), except that for x = 0 and a <= 0.0, GammaIC is undefined. | |
GammaIC(Double, Double, Boolean) | Evaluate the complementary incomplete Gamma function GammaIC(x,a) = integral from x to infinity of exp(-t) * t**(a-1) GammaIC(x,a) is evaluated for arbitrary real values of A and for non-negative values of x (even though GammaIC is defined for x < 0.0), except that for x = 0 and a <= 0.0, GammaIC is undefined. | |
GammaIT(Double, Double) | GammaIT(x,a) evaluates Tricomi's incomplete gamma function defined by GammaIT = x**(-a)/Gamma(a) * integral from 0 to x of exp(-t) * t**(a-1.0) for a > 0.0 and by analytic continuation for a <= 0.0. Gamma(x) is the complete gamma function of x. | |
GammaIT(Double, Double, Boolean) | GammaIT(x,a) evaluates Tricomi's incomplete gamma function defined by GammaIT = x**(-a)/Gamma(a) * integral from 0 to x of exp(-t) * t**(a-1.0) for a > 0.0 and by analytic continuation for a <= 0.0. Gamma(x) is the complete gamma function of x. | |
GammaRegularized(Double, Double) | Evaluate the incomplete regularized Gamma function GammaRegularized(a,z) = { integral from z to infinity of exp(-t) * t**(a-1) } / Gamma(a) The order of parameters is the same as the Mathematica function GammaRegularized[a,z]. | |
GammaRegularized(Double, Double, Double) | Evaluate the incomplete regularized Gamma function Gamma(a,z0,z1) = { integral from z0 to z1 of exp(-t) * t**(a-1) }/Gamma(a) The order of parameters is the same as the Mathematica function GammaRegularized[a,z0,z1]. | |
GetHashCode | Serves as the default hash function. (Inherited from Object) | |
GetType | Gets the Type of the current instance. (Inherited from Object) | |
InverseBetaRegularized | InverseBetaRegularized gives the inverse of the incomplete beta function ratio (BetaIR(Double, Double, Double) or BetaRegularized(Double, Double, Double)). | |
InverseGammaRegularized | ||
LnBeta(Double, Double) | LnBeta(a,b) calculates the double precision natural logarithm of the complete beta function for double precision arguments a and b. | |
LnBeta(Double, Double, Boolean) | LnBeta(a,b) calculates the double precision natural logarithm of the complete beta function for double precision arguments a and b. | |
LnGamma(Complex) | Complex64T logarithm of the gamma function. | |
LnGamma(Double) | Calculates the double precision logarithm of the absolute value of the Gamma function for double precision argument x. | |
LnGamma(Complex, Boolean) | Complex64T logarithm of the gamma function. | |
LnGamma(Double, Boolean) | Calculates the double precision logarithm of the absolute value of the Gamma function for double precision argument x. | |
LnGamma(Double, Double) | LnGamma(x,sgn) returns the double precision natural logarithm of the absolute value of the Gamma function for double precision argument x. The sign of the gamma function is returned in sgn. | |
LnGamma(Double, Double, Boolean) | LnGamma(x,sgn) returns the double precision natural logarithm of the absolute value of the Gamma function for double precision argument x. The sign of the gamma function is returned in sgn. | |
LogBinomial | Gives the natural logarithm of the binomial coefficient ( n over m). | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object) | |
ToString | Returns a string that represents the current object. (Inherited from Object) |