Click or drag to resize

Altaxo.Calc.Regression.Multivariate Namespace

[Missing <summary> documentation for "N:Altaxo.Calc.Regression.Multivariate"]

Classes
 ClassDescription
Public classCrossPredictedXResidualsEvaluator 
Public classCrossPredictedYEvaluator 
Public classCrossPRESSEvaluator 
Public classCrossValidationGroupingStrategyExcludeGroupsOfSimilarMeasurements This strategy groups together similar observations, i.e. observations that have exactly the same target values.
Public classCrossValidationGroupingStrategyExcludeGroupsOfSimilarMeasurements.SerializationSurrogate0 
Public classCrossValidationGroupingStrategyExcludeHalfObservations This strategy groups the observations into two groups. It try to part observations with the same target values equally into the one group and the other group.
Public classCrossValidationGroupingStrategyExcludeHalfObservations.SerializationSurrogate0 
Public classCrossValidationGroupingStrategyExcludeSingleMeasurements Stragegy that groups each observation in an own group.
Public classCrossValidationGroupingStrategyExcludeSingleMeasurements.SerializationSurrogate0 
Public classCrossValidationGroupingStrategyNone Represents the no-grouping strategy. Thus a call to Group(IROMatrix<Double> ) will result in a NotImplementedException.
Public classCrossValidationGroupingStrategyNone.SerializationSurrogate0 
Public classCrossValidationResult Stores the result(s) of cross validation.
Public classCrossValidationResultEvaluator 
Public classCrossValidationWorker 
Public classDimensionReductionAndRegressionDataSource Data source for an algorithm based on dimension reduction and then regression of the reduced dimensions (PLS1, PLS2, PCR).
Public classDimensionReductionAndRegressionOptions Process options for the multivariate analyses that feature a dimension reduction and regression.
Public classDimensionReductionAndRegressionOptions.SerializationSurrogate0 
Public classDimensionReductionAndRegressionPredictionDataSource Data source of a table that contains predicted data. The data were predicted from a multivariate model (a table containing a DimensionReductionAndRegressionDataSource), and a table containing the spectra used for prediction.
Public classDimensionReductionAndRegressionPredictionProcessData Contains the data used in DimensionReductionAndRegressionPredictionDataSource to predict data using a prediction model, and some spectral data.
Public classDimensionReductionAndRegressionPreprocessedXDataSource Data source for a table that contains preprocessed spectra, originated from a DimensionReductionAndRegressionDataSource. Thus, this data source contains only a reference to a table containing the DimensionReductionAndRegressionDataSource. All data how to obtain the preprocessed spectra are contained in that data source.
Public classDimensionReductionAndRegressionResult
Public classDimensionReductionAndRegressionResult.SerializationSurrogate0 
Public classMultivariateCalibrationModel 
Public classMultivariateContentMemento This class is for remembering the content of the PLS calibration and where to found the original data.
Public classMultivariateContentMemento.CrossPRESSCalculationTypeXmlSerializationSurrogate1 
Public classMultivariateLinearFitParameters 
Public classMultivariateLinearRegression Summary description for MultivariateLinearRegression.
Public classMultivariatePreprocessingModel 
Public classMultivariateRegression Contains method common for all multivariate regressions.
Public classPCRCalibrationModel 
Public classPCRRegression PCRRegression contains static methods for doing principal component regression analysis and prediction of the data.
Public classPCRWorksheetAnalysis PCRWorksheetAnalysis performs a principal component analysis and subsequent regression and stores the results in a given table
Public classPCRWorksheetAnalysis.SerializationSurrogate0 
Public classPLS1CalibrationModel 
Public classPLS1Regression Summary description for PLS1Regression.
Public classPLS1WorksheetAnalysis PLS2WorksheetAnalysis performs a PLS1 analysis and stores the results in a given table
Public classPLS1WorksheetAnalysis.SerializationSurrogate0 
Public classPLS2CalibrationModel 
Public classPLS2Regression PLSRegression contains static methods for doing partial least squares regression analysis and prediction of the data.
Public classPLS2WorksheetAnalysis PLS2WorksheetAnalysis performs a PLS2 analysis and stores the results in a given table
Public classPLS2WorksheetAnalysis.SerializationSurrogate0 
Public classSpectralPreprocessingOptions SpectralPreprocessingOptions holds the options applied to all spectra before processed by PLS or PCR.
Public classWorksheetAnalysis WorksheetMethods provides common utility methods for multivariate data analysis.
Public classWorksheetAnalysis.OriginalDataTableNotFoundException 
Structures
 StructureDescription
Public structureMultivariateAnalysisOptions Determines how to do a Partial Least Squares Analysis.
Interfaces
 InterfaceDescription
Public interfaceICrossValidationGroupingStrategy Provides a strategie for grouping the data (spectra etc.) according to their corresponding calibration values (concentration etc).
Public interfaceICrossValidationResult Stores the result(s) of cross validation.
Public interfaceIMultivariateCalibrationModel IMultivariateCalibrationModel contains the basic data for a multivariate calibration model
Public interfaceIMultivariatePreprocessingModel Contains the basic data that where obtained during preprocessing.
Public interfaceIPLS2CalibrationModel 
Delegates
 DelegateDescription
Public delegateMultivariateRegression.CrossValidationIterationFunction Function used for cross validation iteration. During cross validation, the original spectral matrix is separated into a spectral group used for prediction and the remaining calibration spectra. Parameters here: group: Indices of measurement that are excluded from the analysis (but then used for prediction). XXRaw: remaining calibration spectra (unpreprocessed). YYRaw: corresponding remaining concentration data (unpreprocessed). XURaw: spectra used for prediction (unpreprocessed). YURaw: corresponding concentration data (unpreprocessed).
Enumerations
 EnumerationDescription
Public enumerationCrossPRESSCalculationType Determines how to do the calculation of Cross Validated Predicted Error Sum of Squares.
Public enumerationSpectralPreprocessingMethodGives the list of basic processing methods