Click or drag to resize

Altaxo.Calc.Ode.Obsolete.DVode Namespace

[Missing <summary> documentation for "N:Altaxo.Calc.Ode.Obsolete.DVode"]

Classes
 ClassDescription
Public classDACOPY 
Public classDAXPY ***PURPOSE Compute a constant times a vector plus a vector. ***CATEGORY D1A7 ***TYPE DOUBLE PRECISION (SAXPY-S, DAXPY-D, CAXPY-C) ***KEYWORDS BLAS, LINEAR ALGEBRA, TRIAD, VECTOR ***AUTHOR Lawson, C. L., (JPL) Hanson, R. J., (SNLA) Kincaid, D. R., (U. of Texas) Krogh, F. T., (JPL) ***DESCRIPTION B L A S Subprogram Description of Parameters --Input-- N number of elements in input vector(s) DA double precision scalar multiplier DX double precision vector with N elements INCX storage spacing between elements of DX DY double precision vector with N elements INCY storage spacing between elements of DY --Output-- DY double precision result (unchanged if N .LE. 0) Overwrite double precision DY with double precision DA*DX + DY. For I = 0 to N-1, replace DY(LY+I*INCY) with DA*DX(LX+I*INCX) + DY(LY+I*INCY), where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is defined in a similar way using INCY. ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh, Basic linear algebra subprograms for Fortran usage, Algorithm No. 539, Transactions on Mathematical Software 5, 3 (September 1979), pp. 308-323. ***ROUTINES CALLED (NONE) ***REVISION HISTORY (YYMMDD) 791001 DATE WRITTEN 890831 Modified array declarations. (WRB) 890831 REVISION DATE from Version 3.2 891214 Prologue converted to Version 4.0 format. (BAB) 920310 Corrected definition of LX in DESCRIPTION. (WRB) 920501 Reformatted the REFERENCES section. (WRB) ***END PROLOGUE DAXPY ***FIRST EXECUTABLE STATEMENT DAXPY
Public classDCOPY ***PURPOSE Copy a vector. ***CATEGORY D1A5 ***TYPE DOUBLE PRECISION (SCOPY-S, DCOPY-D, CCOPY-C, ICOPY-I) ***KEYWORDS BLAS, COPY, LINEAR ALGEBRA, VECTOR ***AUTHOR Lawson, C. L., (JPL) Hanson, R. J., (SNLA) Kincaid, D. R., (U. of Texas) Krogh, F. T., (JPL) ***DESCRIPTION B L A S Subprogram Description of Parameters --Input-- N number of elements in input vector(s) DX double precision vector with N elements INCX storage spacing between elements of DX DY double precision vector with N elements INCY storage spacing between elements of DY --Output-- DY copy of vector DX (unchanged if N .LE. 0) Copy double precision DX to double precision DY. For I = 0 to N-1, copy DX(LX+I*INCX) to DY(LY+I*INCY), where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is defined in a similar way using INCY. ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh, Basic linear algebra subprograms for Fortran usage, Algorithm No. 539, Transactions on Mathematical Software 5, 3 (September 1979), pp. 308-323. ***ROUTINES CALLED (NONE) ***REVISION HISTORY (YYMMDD) 791001 DATE WRITTEN 890831 Modified array declarations. (WRB) 890831 REVISION DATE from Version 3.2 891214 Prologue converted to Version 4.0 format. (BAB) 920310 Corrected definition of LX in DESCRIPTION. (WRB) 920501 Reformatted the REFERENCES section. (WRB) ***END PROLOGUE DCOPY ***FIRST EXECUTABLE STATEMENT DCOPY
Public classDDOT ***PURPOSE Compute the inner product of two vectors. ***CATEGORY D1A4 ***TYPE DOUBLE PRECISION (SDOT-S, DDOT-D, CDOTU-C) ***KEYWORDS BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR ***AUTHOR Lawson, C. L., (JPL) Hanson, R. J., (SNLA) Kincaid, D. R., (U. of Texas) Krogh, F. T., (JPL) ***DESCRIPTION B L A S Subprogram Description of Parameters --Input-- N number of elements in input vector(s) DX double precision vector with N elements INCX storage spacing between elements of DX DY double precision vector with N elements INCY storage spacing between elements of DY --Output-- DDOT double precision dot product (zero if N .LE. 0) Returns the dot product of double precision DX and DY. DDOT = sum for I = 0 to N-1 of DX(LX+I*INCX) * DY(LY+I*INCY), where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is defined in a similar way using INCY. ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh, Basic linear algebra subprograms for Fortran usage, Algorithm No. 539, Transactions on Mathematical Software 5, 3 (September 1979), pp. 308-323. ***ROUTINES CALLED (NONE) ***REVISION HISTORY (YYMMDD) 791001 DATE WRITTEN 890831 Modified array declarations. (WRB) 890831 REVISION DATE from Version 3.2 891214 Prologue converted to Version 4.0 format. (BAB) 920310 Corrected definition of LX in DESCRIPTION. (WRB) 920501 Reformatted the REFERENCES section. (WRB) ***END PROLOGUE DDOT ***FIRST EXECUTABLE STATEMENT DDOT
Public classDEWSET ***PURPOSE Set error weight vector. ***TYPE DOUBLE PRECISION (SEWSET-S, DEWSET-D) ***AUTHOR Hindmarsh, Alan C., (LLNL) ***DESCRIPTION This subroutine sets the error weight vector EWT according to EWT(i) = RTOL(i)*ABS(YCUR(i)) + ATOL(i), i = 1,...,N, with the subscript on RTOL and/or ATOL possibly replaced by 1 above, depending on the value of ITOL. ***SEE ALSO DLSODE ***ROUTINES CALLED (NONE) ***REVISION HISTORY (YYMMDD) 791129 DATE WRITTEN 890501 Modified prologue to SLATEC/LDOC format. (FNF) 890503 Minor cosmetic changes. (FNF) 930809 Renamed to allow single/double precision versions. (ACH) ***END PROLOGUE DEWSET **End ***FIRST EXECUTABLE STATEMENT DEWSET
Public classDGBFA ***PURPOSE Factor a band matrix using Gaussian elimination. ***CATEGORY D2A2 ***TYPE DOUBLE PRECISION (SGBFA-S, DGBFA-D, CGBFA-C) ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION ***AUTHOR Moler, C. B., (U. of New Mexico) ***DESCRIPTION DGBFA factors a double precision band matrix by elimination. DGBFA is usually called by DGBCO, but it can be called directly with a saving in time if RCOND is not needed. On Entry ABD DOUBLE PRECISION(LDA, N) contains the matrix in band storage. The columns of the matrix are stored in the columns of ABD and the diagonals of the matrix are stored in rows ML+1 through 2*ML+MU+1 of ABD . See the comments below for details. LDA INTEGER the leading dimension of the array ABD . LDA must be .GE. 2*ML + MU + 1 . N INTEGER the order of the original matrix. ML INTEGER number of diagonals below the main diagonal. 0 .LE. ML .LT. N . MU INTEGER number of diagonals above the main diagonal. 0 .LE. MU .LT. N . More efficient if ML .LE. MU . On Return ABD an upper triangular matrix in band storage and the multipliers which were used to obtain it. The factorization can be written A = L*U where L is a product of permutation and unit lower triangular matrices and U is upper triangular. IPVT INTEGER(N) an integer vector of pivot indices. INFO INTEGER = 0 normal value. = K if U(K,K) .EQ. 0.0 . This is not an error condition for this subroutine, but it does indicate that DGBSL will divide by zero if called. Use RCOND in DGBCO for a reliable indication of singularity. Band Storage If A is a band matrix, the following program segment will set up the input. ML = (band width below the diagonal) MU = (band width above the diagonal) M = ML + MU + 1 DO 20 J = 1, N I1 = MAX(1, J-MU) I2 = MIN(N, J+ML) DO 10 I = I1, I2 K = I - J + M ABD(K,J) = A(I,J) 10 CONTINUE 20 CONTINUE This uses rows ML+1 through 2*ML+MU+1 of ABD . In addition, the first ML rows in ABD are used for elements generated during the triangularization. The total number of rows needed in ABD is 2*ML+MU+1 . The ML+MU by ML+MU upper left triangle and the ML by ML lower right triangle are not referenced. ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users' Guide, SIAM, 1979. ***ROUTINES CALLED DAXPY, DSCAL, IDAMAX ***REVISION HISTORY (YYMMDD) 780814 DATE WRITTEN 890531 Changed all specific intrinsics to generic. (WRB) 890831 Modified array declarations. (WRB) 890831 REVISION DATE from Version 3.2 891214 Prologue converted to Version 4.0 format. (BAB) 900326 Removed duplicate information from DESCRIPTION section. (WRB) 920501 Reformatted the REFERENCES section. (WRB) ***END PROLOGUE DGBFA
Public classDGBSL ***PURPOSE Solve the real band system A*X=B or TRANS(A)*X=B using the factors computed by DGBCO or DGBFA. ***CATEGORY D2A2 ***TYPE DOUBLE PRECISION (SGBSL-S, DGBSL-D, CGBSL-C) ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE ***AUTHOR Moler, C. B., (U. of New Mexico) ***DESCRIPTION DGBSL solves the double precision band system A * X = B or TRANS(A) * X = B using the factors computed by DGBCO or DGBFA. On Entry ABD DOUBLE PRECISION(LDA, N) the output from DGBCO or DGBFA. LDA INTEGER the leading dimension of the array ABD . N INTEGER the order of the original matrix. ML INTEGER number of diagonals below the main diagonal. MU INTEGER number of diagonals above the main diagonal. IPVT INTEGER(N) the pivot vector from DGBCO or DGBFA. B DOUBLE PRECISION(N) the right hand side vector. JOB INTEGER = 0 to solve A*X = B , = nonzero to solve TRANS(A)*X = B , where TRANS(A) is the transpose. On Return B the solution vector X . Error Condition A division by zero will occur if the input factor contains a zero on the diagonal. Technically this indicates singularity but it is often caused by improper arguments or improper setting of LDA . It will not occur if the subroutines are called correctly and if DGBCO has set RCOND .GT. 0.0 or DGBFA has set INFO .EQ. 0 . To compute INVERSE(A) * C where C is a matrix with P columns CALL DGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z) IF (RCOND is too small) GO TO ... DO 10 J = 1, P CALL DGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0) 10 CONTINUE ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users' Guide, SIAM, 1979. ***ROUTINES CALLED DAXPY, DDOT ***REVISION HISTORY (YYMMDD) 780814 DATE WRITTEN 890531 Changed all specific intrinsics to generic. (WRB) 890831 Modified array declarations. (WRB) 890831 REVISION DATE from Version 3.2 891214 Prologue converted to Version 4.0 format. (BAB) 900326 Removed duplicate information from DESCRIPTION section. (WRB) 920501 Reformatted the REFERENCES section. (WRB) ***END PROLOGUE DGBSL ***FIRST EXECUTABLE STATEMENT DGBSL
Public classDGEFA ***PURPOSE Factor a matrix using Gaussian elimination. ***CATEGORY D2A1 ***TYPE DOUBLE PRECISION (SGEFA-S, DGEFA-D, CGEFA-C) ***KEYWORDS GENERAL MATRIX, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION ***AUTHOR Moler, C. B., (U. of New Mexico) ***DESCRIPTION DGEFA factors a double precision matrix by Gaussian elimination. DGEFA is usually called by DGECO, but it can be called directly with a saving in time if RCOND is not needed. (Time for DGECO) = (1 + 9/N)*(Time for DGEFA) . On Entry A DOUBLE PRECISION(LDA, N) the matrix to be factored. LDA INTEGER the leading dimension of the array A . N INTEGER the order of the matrix A . On Return A an upper triangular matrix and the multipliers which were used to obtain it. The factorization can be written A = L*U where L is a product of permutation and unit lower triangular matrices and U is upper triangular. IPVT INTEGER(N) an integer vector of pivot indices. INFO INTEGER = 0 normal value. = K if U(K,K) .EQ. 0.0 . This is not an error condition for this subroutine, but it does indicate that DGESL or DGEDI will divide by zero if called. Use RCOND in DGECO for a reliable indication of singularity. ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users' Guide, SIAM, 1979. ***ROUTINES CALLED DAXPY, DSCAL, IDAMAX ***REVISION HISTORY (YYMMDD) 780814 DATE WRITTEN 890831 Modified array declarations. (WRB) 890831 REVISION DATE from Version 3.2 891214 Prologue converted to Version 4.0 format. (BAB) 900326 Removed duplicate information from DESCRIPTION section. (WRB) 920501 Reformatted the REFERENCES section. (WRB) ***END PROLOGUE DGEFA
Public classDGESL ***PURPOSE Solve the real system A*X=B or TRANS(A)*X=B using the factors computed by DGECO or DGEFA. ***CATEGORY D2A1 ***TYPE DOUBLE PRECISION (SGESL-S, DGESL-D, CGESL-C) ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE ***AUTHOR Moler, C. B., (U. of New Mexico) ***DESCRIPTION DGESL solves the double precision system A * X = B or TRANS(A) * X = B using the factors computed by DGECO or DGEFA. On Entry A DOUBLE PRECISION(LDA, N) the output from DGECO or DGEFA. LDA INTEGER the leading dimension of the array A . N INTEGER the order of the matrix A . IPVT INTEGER(N) the pivot vector from DGECO or DGEFA. B DOUBLE PRECISION(N) the right hand side vector. JOB INTEGER = 0 to solve A*X = B , = nonzero to solve TRANS(A)*X = B where TRANS(A) is the transpose. On Return B the solution vector X . Error Condition A division by zero will occur if the input factor contains a zero on the diagonal. Technically this indicates singularity but it is often caused by improper arguments or improper setting of LDA . It will not occur if the subroutines are called correctly and if DGECO has set RCOND .GT. 0.0 or DGEFA has set INFO .EQ. 0 . To compute INVERSE(A) * C where C is a matrix with P columns CALL DGECO(A,LDA,N,IPVT,RCOND,Z) IF (RCOND is too small) GO TO ... DO 10 J = 1, P CALL DGESL(A,LDA,N,IPVT,C(1,J),0) 10 CONTINUE ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users' Guide, SIAM, 1979. ***ROUTINES CALLED DAXPY, DDOT ***REVISION HISTORY (YYMMDD) 780814 DATE WRITTEN 890831 Modified array declarations. (WRB) 890831 REVISION DATE from Version 3.2 891214 Prologue converted to Version 4.0 format. (BAB) 900326 Removed duplicate information from DESCRIPTION section. (WRB) 920501 Reformatted the REFERENCES section. (WRB) ***END PROLOGUE DGESL ***FIRST EXECUTABLE STATEMENT DGESL
Public classDNRM2 ***PURPOSE Compute the Euclidean length (L2 norm) of a vector. ***CATEGORY D1A3B ***TYPE DOUBLE PRECISION (SNRM2-S, DNRM2-D, SCNRM2-C) ***KEYWORDS BLAS, EUCLIDEAN LENGTH, EUCLIDEAN NORM, L2, LINEAR ALGEBRA, UNITARY, VECTOR ***AUTHOR Lawson, C. L., (JPL) Hanson, R. J., (SNLA) Kincaid, D. R., (U. of Texas) Krogh, F. T., (JPL) ***DESCRIPTION B L A S Subprogram Description of parameters --Input-- N number of elements in input vector(s) DX double precision vector with N elements INCX storage spacing between elements of DX --Output-- DNRM2 double precision result (zero if N .LE. 0) Euclidean norm of the N-vector stored in DX with storage increment INCX. If N .LE. 0, return with result = 0. If N .GE. 1, then INCX must be .GE. 1 Four phase method using two built-in constants that are hopefully applicable to all machines. CUTLO = maximum of SQRT(U/EPS) over all known machines. CUTHI = minimum of SQRT(V) over all known machines. where EPS = smallest no. such that EPS + 1. .GT. 1. U = smallest positive no. (underflow limit) V = largest no. (overflow limit) Brief outline of algorithm. Phase 1 scans zero components. move to phase 2 when a component is nonzero and .LE. CUTLO move to phase 3 when a component is .GT. CUTLO move to phase 4 when a component is .GE. CUTHI/M where M = N for X() real and M = 2*N for complex. Values for CUTLO and CUTHI. From the environmental parameters listed in the IMSL converter document the limiting values are as follows: CUTLO, S.P. U/EPS = 2**(-102) for Honeywell. Close seconds are Univac and DEC at 2**(-103) Thus CUTLO = 2**(-51) = 4.44089E-16 CUTHI, S.P. V = 2**127 for Univac, Honeywell, and DEC. Thus CUTHI = 2**(63.5) = 1.30438E19 CUTLO, D.P. U/EPS = 2**(-67) for Honeywell and DEC. Thus CUTLO = 2**(-33.5) = 8.23181D-11 CUTHI, D.P. same as S.P. CUTHI = 1.30438D19 DATA CUTLO, CUTHI /8.232D-11, 1.304D19/ DATA CUTLO, CUTHI /4.441E-16, 1.304E19/ ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh, Basic linear algebra subprograms for Fortran usage, Algorithm No. 539, Transactions on Mathematical Software 5, 3 (September 1979), pp. 308-323. ***ROUTINES CALLED (NONE) ***REVISION HISTORY (YYMMDD) 791001 DATE WRITTEN 890531 Changed all specific intrinsics to generic. (WRB) 890831 Modified array declarations. (WRB) 890831 REVISION DATE from Version 3.2 891214 Prologue converted to Version 4.0 format. (BAB) 920501 Reformatted the REFERENCES section. (WRB) ***END PROLOGUE DNRM2 ***FIRST EXECUTABLE STATEMENT DNRM2
Public classDSCAL ***PURPOSE Multiply a vector by a constant. ***CATEGORY D1A6 ***TYPE DOUBLE PRECISION (SSCAL-S, DSCAL-D, CSCAL-C) ***KEYWORDS BLAS, LINEAR ALGEBRA, SCALE, VECTOR ***AUTHOR Lawson, C. L., (JPL) Hanson, R. J., (SNLA) Kincaid, D. R., (U. of Texas) Krogh, F. T., (JPL) ***DESCRIPTION B L A S Subprogram Description of Parameters --Input-- N number of elements in input vector(s) DA double precision scale factor DX double precision vector with N elements INCX storage spacing between elements of DX --Output-- DX double precision result (unchanged if N.LE.0) Replace double precision DX by double precision DA*DX. For I = 0 to N-1, replace DX(IX+I*INCX) with DA * DX(IX+I*INCX), where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX. ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh, Basic linear algebra subprograms for Fortran usage, Algorithm No. 539, Transactions on Mathematical Software 5, 3 (September 1979), pp. 308-323. ***ROUTINES CALLED (NONE) ***REVISION HISTORY (YYMMDD) 791001 DATE WRITTEN 890831 Modified array declarations. (WRB) 890831 REVISION DATE from Version 3.2 891214 Prologue converted to Version 4.0 format. (BAB) 900821 Modified to correct problem with a negative increment. (WRB) 920501 Reformatted the REFERENCES section. (WRB) ***END PROLOGUE DSCAL ***FIRST EXECUTABLE STATEMENT DSCAL
Public classDUMACH ***PURPOSE Compute the unit roundoff of the machine. ***CATEGORY R1 ***TYPE DOUBLE PRECISION (RUMACH-S, DUMACH-D) ***KEYWORDS MACHINE CONSTANTS ***AUTHOR Hindmarsh, Alan C., (LLNL) ***DESCRIPTION *Usage: DOUBLE PRECISION A, DUMACH A = DUMACH() *Function Return Values: A : the unit roundoff of the machine. *Description: The unit roundoff is defined as the smallest positive machine number u such that 1.0 + u .ne. 1.0. This is computed by DUMACH in a machine-independent manner. ***REFERENCES (NONE) ***ROUTINES CALLED DUMSUM ***REVISION HISTORY (YYYYMMDD) 19930216 DATE WRITTEN 19930818 Added SLATEC-format prologue. (FNF) 20030707 Added DUMSUM to force normal storage of COMP. (ACH) ***END PROLOGUE DUMACH ***FIRST EXECUTABLE STATEMENT DUMACH
Public classDUMSUM 
Public classDVHIN 
Public classDVINDY 
Public classDVJAC 
Public classDVJUST 
Public classDVNLSD 
Public classDVNORM ***PURPOSE Weighted root-mean-square vector norm. ***TYPE DOUBLE PRECISION (SVNORM-S, DVNORM-D) ***AUTHOR Hindmarsh, Alan C., (LLNL) ***DESCRIPTION This function routine computes the weighted root-mean-square norm of the vector of length N contained in the array V, with weights contained in the array W of length N: DVNORM = SQRT( (1/N) * SUM( V(i)*W(i) )**2 ) ***SEE ALSO DLSODE ***ROUTINES CALLED (NONE) ***REVISION HISTORY (YYMMDD) 791129 DATE WRITTEN 890501 Modified prologue to SLATEC/LDOC format. (FNF) 890503 Minor cosmetic changes. (FNF) 930809 Renamed to allow single/double precision versions. (ACH) ***END PROLOGUE DVNORM **End ***FIRST EXECUTABLE STATEMENT DVNORM
Public classDVODE 
Public classDVSET 
Public classDVSOL 
Public classDVSRCO 
Public classDVSTEP 
Public classIDAMAX ***PURPOSE Find the smallest index of that component of a vector having the maximum magnitude. ***CATEGORY D1A2 ***TYPE DOUBLE PRECISION (ISAMAX-S, IDAMAX-D, ICAMAX-C) ***KEYWORDS BLAS, LINEAR ALGEBRA, MAXIMUM COMPONENT, VECTOR ***AUTHOR Lawson, C. L., (JPL) Hanson, R. J., (SNLA) Kincaid, D. R., (U. of Texas) Krogh, F. T., (JPL) ***DESCRIPTION B L A S Subprogram Description of Parameters --Input-- N number of elements in input vector(s) DX double precision vector with N elements INCX storage spacing between elements of DX --Output-- IDAMAX smallest index (zero if N .LE. 0) Find smallest index of maximum magnitude of double precision DX. IDAMAX = first I, I = 1 to N, to maximize ABS(DX(IX+(I-1)*INCX)), where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX. ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh, Basic linear algebra subprograms for Fortran usage, Algorithm No. 539, Transactions on Mathematical Software 5, 3 (September 1979), pp. 308-323. ***ROUTINES CALLED (NONE) ***REVISION HISTORY (YYMMDD) 791001 DATE WRITTEN 890531 Changed all specific intrinsics to generic. (WRB) 890531 REVISION DATE from Version 3.2 891214 Prologue converted to Version 4.0 format. (BAB) 900821 Modified to correct problem with a negative increment. (WRB) 920501 Reformatted the REFERENCES section. (WRB) ***END PROLOGUE IDAMAX ***FIRST EXECUTABLE STATEMENT IDAMAX
Public classIUMACH ***PURPOSE Provide standard output unit number. ***CATEGORY R1 ***TYPE INTEGER (IUMACH-I) ***KEYWORDS MACHINE CONSTANTS ***AUTHOR Hindmarsh, Alan C., (LLNL) ***DESCRIPTION *Usage: INTEGER LOUT, IUMACH LOUT = IUMACH() *Function Return Values: LOUT : the standard logical unit for Fortran output. ***REFERENCES (NONE) ***ROUTINES CALLED (NONE) ***REVISION HISTORY (YYMMDD) 930915 DATE WRITTEN 930922 Made user-callable, and other cosmetic changes. (FNF) ***END PROLOGUE IUMACH *Internal Notes: The built-in value of 6 is standard on a wide range of Fortran systems. This may be machine-dependent. **End ***FIRST EXECUTABLE STATEMENT IUMACH
Public classIXSAV ***PURPOSE Save and recall error message control parameters. ***CATEGORY R3C ***TYPE ALL (IXSAV-A) ***AUTHOR Hindmarsh, Alan C., (LLNL) ***DESCRIPTION IXSAV saves and recalls one of two error message parameters: LUNIT, the logical unit number to which messages are printed, and MESFLG, the message print flag. This is a modification of the SLATEC library routine J4SAVE. Saved local variables.. LUNIT = Logical unit number for messages. The default is obtained by a call to IUMACH (may be machine-dependent). MESFLG = Print control flag.. 1 means print all messages (the default). 0 means no printing. On input.. IPAR = Parameter indicator (1 for LUNIT, 2 for MESFLG). IVALUE = The value to be set for the parameter, if ISET = .TRUE. ISET = Logical flag to indicate whether to read or write. If ISET = .TRUE., the parameter will be given the value IVALUE. If ISET = .FALSE., the parameter will be unchanged, and IVALUE is a dummy argument. On return.. IXSAV = The (old) value of the parameter. ***SEE ALSO XERRWD, XERRWV ***ROUTINES CALLED IUMACH ***REVISION HISTORY (YYMMDD) 921118 DATE WRITTEN 930329 Modified prologue to SLATEC format. (FNF) 930915 Added IUMACH call to get default output unit. (ACH) 930922 Minor cosmetic changes. (FNF) 010425 Type declaration for IUMACH added. (ACH) ***END PROLOGUE IXSAV Subroutines called by IXSAV.. None Function routine called by IXSAV.. IUMACH ----------------------------------------------------------------------- **End ----------------------------------------------------------------------- ----------------------------------------------------------------------- The following Fortran-77 declaration is to cause the values of the listed (local) variables to be saved between calls to this routine. ----------------------------------------------------------------------- ***FIRST EXECUTABLE STATEMENT IXSAV
Public classxBaseOdeGearsAndAdamsMoulton Represents a base class for the Adams-Moulton and Gear’s BDF classes.
Public classXERRWD ***PURPOSE Write error message with values. ***CATEGORY R3C ***TYPE DOUBLE PRECISION (XERRWV-S, XERRWD-D) ***AUTHOR Hindmarsh, Alan C., (LLNL) ***DESCRIPTION Subroutines XERRWD, XSETF, XSETUN, and the function routine IXSAV, as given here, constitute a simplified version of the SLATEC error handling package. All arguments are input arguments. MSG = The message (character array). NMES = The length of MSG (number of characters). NERR = The error number (not used). LEVEL = The error level.. 0 or 1 means recoverable (control returns to caller). 2 means fatal (run is aborted--see note below). NI = Number of integers (0, 1, or 2) to be printed with message. I1,I2 = Integers to be printed, depending on NI. NR = Number of reals (0, 1, or 2) to be printed with message. R1,R2 = Reals to be printed, depending on NR. Note.. this routine is machine-dependent and specialized for use in limited context, in the following ways.. 1. The argument MSG is assumed to be of type CHARACTER, and the message is printed with a format of (1X,A). 2. The message is assumed to take only one line. Multi-line messages are generated by repeated calls. 3. If LEVEL = 2, control passes to the statement STOP to abort the run. This statement may be machine-dependent. 4. R1 and R2 are assumed to be in double precision and are printed in D21.13 format. ***ROUTINES CALLED IXSAV ***REVISION HISTORY (YYMMDD) 920831 DATE WRITTEN 921118 Replaced MFLGSV/LUNSAV by IXSAV. (ACH) 930329 Modified prologue to SLATEC format. (FNF) 930407 Changed MSG from CHARACTER*1 array to variable. (FNF) 930922 Minor cosmetic change. (FNF) ***END PROLOGUE XERRWD *Internal Notes: For a different default logical unit number, IXSAV (or a subsidiary routine that it calls) will need to be modified. For a different run-abort command, change the statement following statement 100 at the end. ----------------------------------------------------------------------- Subroutines called by XERRWD.. None Function routine called by XERRWD.. IXSAV ----------------------------------------------------------------------- **End Declare arguments.
Public classXSETF ***PURPOSE Reset the error print control flag. ***CATEGORY R3A ***TYPE ALL (XSETF-A) ***KEYWORDS ERROR CONTROL ***AUTHOR Hindmarsh, Alan C., (LLNL) ***DESCRIPTION XSETF sets the error print control flag to MFLAG: MFLAG=1 means print all messages (the default). MFLAG=0 means no printing. ***SEE ALSO XERRWD, XERRWV ***REFERENCES (NONE) ***ROUTINES CALLED IXSAV ***REVISION HISTORY (YYMMDD) 921118 DATE WRITTEN 930329 Added SLATEC format prologue. (FNF) 930407 Corrected SEE ALSO section. (FNF) 930922 Made user-callable, and other cosmetic changes. (FNF) ***END PROLOGUE XSETF Subroutines called by XSETF.. None Function routine called by XSETF.. IXSAV ----------------------------------------------------------------------- **End ***FIRST EXECUTABLE STATEMENT XSETF
Public classXSETUN ***PURPOSE Reset the logical unit number for error messages. ***CATEGORY R3B ***TYPE ALL (XSETUN-A) ***KEYWORDS ERROR CONTROL ***DESCRIPTION XSETUN sets the logical unit number for error messages to LUN. ***AUTHOR Hindmarsh, Alan C., (LLNL) ***SEE ALSO XERRWD, XERRWV ***REFERENCES (NONE) ***ROUTINES CALLED IXSAV ***REVISION HISTORY (YYMMDD) 921118 DATE WRITTEN 930329 Added SLATEC format prologue. (FNF) 930407 Corrected SEE ALSO section. (FNF) 930922 Made user-callable, and other cosmetic changes. (FNF) ***END PROLOGUE XSETUN Subroutines called by XSETUN.. None Function routine called by XSETUN.. IXSAV ----------------------------------------------------------------------- **End ***FIRST EXECUTABLE STATEMENT XSETUN
Interfaces
 InterfaceDescription
Public interfaceIDVNLSD 
Public interfaceIFEX 
Public interfaceIJEX