Click or drag to resize

HelmholtzEquationOfStateOfPureFluids Class

Equation of state based on the dimensionless Helmholtz energy, for pure fluids.
Inheritance Hierarchy

Namespace: Altaxo.Science.Thermodynamics.Fluids
Assembly: AltaxoCore (in AltaxoCore.dll) Version: 4.8.3179.0 (4.8.3179.0)
Syntax
C#
public abstract class HelmholtzEquationOfStateOfPureFluids : HelmholtzEquationOfState

The HelmholtzEquationOfStateOfPureFluids type exposes the following members.

Constructors
 NameDescription
Protected methodHelmholtzEquationOfStateOfPureFluidsInitializes a new instance of the HelmholtzEquationOfStateOfPureFluids class
Top
Properties
 NameDescription
Public propertyAcentricFactorGets the acentric factor.
Public propertyCriticalPointMassDensityGets the mass density at the critical point in kg/m³.
Public propertyCriticalPointMoleDensityGets the mole density at the critical point in mol/m³.
Public propertyCriticalPointPressureGets the pressure at the critical point in Pa.
Public propertyCriticalPointTemperatureGets the temperature at the critical point in Kelvin.
Public propertyMolecularWeight Gets the (typical) molecular weight of the fluid.
(Inherited from HelmholtzEquationOfState)
Public propertyNormalBoilingPointTemperatureGets the boiling temperature at normal pressure (101325 Pa) in K (if existent). If not existent, the return value is null.
Public propertyNormalSublimationPointTemperatureGets the sublimation temperature at normal pressure (101325 Pa) in K (if existent). If not existent, the return value is null.
Public propertyReducingMassDensity Gets the density (in kg/m³) used to calculate the reduced (dimensionless) density.
(Inherited from HelmholtzEquationOfState)
Public propertyReducingMoleDensity Gets the molar density (in mol/m³) used to calculate the reduced (dimensionless) density.
(Overrides HelmholtzEquationOfStateReducingMoleDensity)
Public propertyReducingTemperature Gets the temperature (in Kelvin) that is used to calculate the inverse reduced temperature.
(Overrides HelmholtzEquationOfStateReducingTemperature)
Public propertyTriplePointPressureGets the triple point pressure in Pa.
Public propertyTriplePointSaturatedLiquidMassDensityGets the saturated liquid density at the triple point in kg/m³.
Public propertyTriplePointSaturatedLiquidMoleDensityGets the saturated liquid density at the triple point in mol/m³.
Public propertyTriplePointSaturatedVaporMassDensityGets the saturated vapor density at the triple point in kg/m³.
Public propertyTriplePointSaturatedVaporMoleDensityGets the saturated vapor density at the triple point in mol/m³.
Public propertyTriplePointTemperatureGets the triple point temperature in K.
Public propertyWorkingSpecificGasConstant Gets the specific gas constant of the fluid. Is calculated from WorkingUniversalGasConstant and MolecularWeight.
(Inherited from HelmholtzEquationOfState)
Public propertyWorkingUniversalGasConstant Gets the universal gas constant that was used at the time this model was developed.
(Inherited from HelmholtzEquationOfState)
Top
Methods
 NameDescription
Public methodEqualsDetermines whether the specified object is equal to the current object.
(Inherited from Object)
Protected methodFinalizeAllows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object)
Public methodGetDeltaFromMassDensity Gets the reduced density by density / ReducingMassDensity.
(Inherited from HelmholtzEquationOfState)
Public methodGetDeltaFromMoleDensity Gets the reduced density by density / ReducingMassDensity.
(Inherited from HelmholtzEquationOfState)
Public methodGetHashCodeServes as the default hash function.
(Inherited from Object)
Public methodStatic memberGetRelativeErrorBetween 
Public methodGetTauFromTemperature Gets the inverse reduced temperature by ReducingTemperature / temperature.
(Inherited from HelmholtzEquationOfState)
Public methodGetTypeGets the Type of the current instance.
(Inherited from Object)
Public methodIsentropicDerivativeOfMassSpecificVolumeWrtPressure_FromMoleDensityAndTemperature Gets the isentropic (adiabatic) derivative of the mass specific volume w.r.t. pressure from mole density and temperature.
(Inherited from HelmholtzEquationOfState)
Public methodIsentropicDerivativeOfMoleSpecificVolumeWrtPressure_FromMoleDensityAndTemperature Gets the isentropic (adiabatic) derivative of the mole specific volume w.r.t. pressure from mole density and temperature.
(Inherited from HelmholtzEquationOfState)
Public methodIsothermalCompressibility_FromMassDensityAndTemperature Gets the isothermal compressibility in 1/Pa from mass density (kg/m³) and temperature (K). Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodIsothermalCompressibility_FromMoleDensityAndTemperature Gets the isothermal compressibility in 1/Pa from mole density (mol/m³) and temperature (K). Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodIsothermalCompressionalModulus_FromMassDensityAndTemperature Gets the isothermal compressional modulus K in Pa from density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodIsothermalCompressionalModulus_FromMoleDensityAndTemperature Gets the isothermal compressional modulus in Pa from density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodIsothermalDerivativePressureWrtMassDensity_FromMassDensityAndTemperature Gets the derivative of pressure w.r.t. the mass density at isothermal conditions. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodIsothermalDerivativePressureWrtMoleDensity_FromMoleDensityAndTemperature Gets the derivative of pressure w.r.t. the mole density at isothermal conditions. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassDensity_FromMoleDensity Gets the mass density (in kg/m³) from mole density (in mol/m³).
(Inherited from HelmholtzEquationOfState)
Public methodMassDensity_FromPressureAndTemperature(Double, Double, Double) Gets the mass density for a given pressure and temperature.
(Inherited from HelmholtzEquationOfState)
Public methodMassDensity_FromPressureAndTemperature(Double, Double, Double, Double) Gets the mole density from a given pressure and temperature.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificEnthalpy_FromMassDensityAndTemperature Get the enthalpy from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificEnthalpy_FromMoleDensityAndTemperature Get the enthalpy from a given density and temperature.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificEntropy_FromMassDensityAndTemperature Get the entropy from a given mole density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificEntropy_FromMoleDensityAndTemperature Get the entropy from a given mole density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificGibbsEnergy_FromMassDensityAndTemperature Get the mass specific Gibbs energy from a given mass density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificGibbsEnergy_FromMoleDensityAndTemperature Get the mass specific Gibbs energy from a given mass density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificHelmholtzEnergy_FromMassDensityAndTemperature Get the Helmholtz energy from a given mass density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificHelmholtzEnergy_FromMoleDensityAndTemperature Get the mass specific Helmholtz energy from a given mass density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificInternalEnergy_FromMassDensityAndTemperature Get the internal energy from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificInternalEnergy_FromMoleDensityAndTemperature Get the internal energy from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificIsobaricHeatCapacity_FromMassDensityAndTemperature Gets the isobaric heat capacity from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificIsobaricHeatCapacity_FromMoleDensityAndTemperature Gets the isobaric heat capacity from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificIsochoricHeatCapacity_FromMassDensityAndTemperature Get the isochoric heat capacity from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMassSpecificIsochoricHeatCapacity_FromMoleDensityAndTemperature Get the isochoric heat capacity from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Protected methodMemberwiseCloneCreates a shallow copy of the current Object.
(Inherited from Object)
Public methodMoleDensity_FromMassDensity Gets the mole density (in mol/m³) from mass density (in kg/m³).
(Inherited from HelmholtzEquationOfState)
Public methodMoleDensity_FromPressureAndTemperature(Double, Double, Double) Get the mole density for a given pressure and temperature.
(Inherited from HelmholtzEquationOfState)
Public methodMoleDensity_FromPressureAndTemperature(Double, Double, Double, Double) Gets the mole density from a given pressure and temperature.
(Inherited from HelmholtzEquationOfState)
Public methodMoleDensityEstimates_FromPressureAndTemperature Gets an estimate of the mole densities at a given pressure and temperature.
(Overrides HelmholtzEquationOfStateMoleDensityEstimates_FromPressureAndTemperature(Double, Double))
Public methodMoleSpecificEnthalpy_FromMassDensityAndTemperature Get the enthalpy from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificEnthalpy_FromMoleDensityAndTemperature Get the enthalpy from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificEntropy_FromMassDensityAndTemperature Get the entropy from a given mole density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificEntropy_FromMoleDensityAndTemperature Get the entropy from a given mole density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificGibbsEnergy_FromMassDensityAndTemperature Get the mole specific Gibbs energy from a given mass density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificGibbsEnergy_FromMoleDensityAndTemperature Get the mole specific Gibbs energy from a given mass density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificHelmholtzEnergy_FromMassDensityAndTemperature Get the Helmholtz energy from a given mass density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificHelmholtzEnergy_FromMoleDensityAndTemperature Get the Helmholtz energy from a given mole density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificInternalEnergy_FromMassDensityAndTemperature Get the internal energy from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificInternalEnergy_FromMoleDensityAndTemperature Get the internal energy from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificIsobaricHeatCapacity_FromMassDensityAndTemperature Gets the isobaric heat capacity from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificIsobaricHeatCapacity_FromMoleDensityAndTemperature Gets the isobaric heat capacity from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificIsochoricHeatCapacity_FromMassDensityAndTemperature Get the mole specific isochoric heat capacity from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodMoleSpecificIsochoricHeatCapacity_FromMoleDensityAndTemperature Get the mole specific isochoric heat capacity from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodPhi0_OfReducedVariables Ideal part of the dimensionless Helmholtz energy as function of reduced variables. (Page 1541, Table 28)
(Inherited from HelmholtzEquationOfState)
Public methodPhi0_tau_OfReducedVariables First derivative of the dimensionless Helmholtz energy as function of reduced variables with respect to the inverse reduced temperature. (Page 1541, Table 28)
(Inherited from HelmholtzEquationOfState)
Public methodPhi0_tautau_OfReducedVariables Second derivative of Phi0 the of reduced variables with respect to the inverse reduced temperature. (Page 1541, Table 28)
(Inherited from HelmholtzEquationOfState)
Public methodPhiR_delta_OfReducedVariables Calculates the first derivative of the residual part of the dimensionless Helmholtz energy with respect to the reduced density delta.
(Inherited from HelmholtzEquationOfState)
Public methodPhiR_deltadelta_OfReducedVariables Calculates the second derivative of the residual part of the dimensionless Helmholtz energy with respect to the reduced density delta.
(Inherited from HelmholtzEquationOfState)
Public methodPhiR_deltatau_OfReducedVariables Calculates the derivative of the residual part of the dimensionless Helmholtz energy with respect to the reduced density delta and the inverse reduced temperature tau.
(Inherited from HelmholtzEquationOfState)
Public methodPhiR_OfReducedVariables Calculates the residual part of the dimensionless Helmholtz energy in dependence on reduced density and reduced inverse temperature.
(Inherited from HelmholtzEquationOfState)
Public methodPhiR_tau_OfReducedVariables Calculates the first derivative of the residual part of the dimensionless Helmholtz energy with respect to the inverse reduced temperature.
(Inherited from HelmholtzEquationOfState)
Public methodPhiR_tautau_OfReducedVariables Calculates the second derivative of the residual part of the dimensionless Helmholtz energy with respect to the inverse reduced temperature.
(Inherited from HelmholtzEquationOfState)
Public methodPressure_FromMassDensityAndTemperature Get the pressure from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodPressure_FromMoleDensityAndTemperature Gets the pressure from a given molar density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodSaturatedLiquidAndVaporMoleDensitiesAndPressure_FromTemperature(Double, Double) Gets the saturated liquid mole density, the saturated vapor mole density, and the pressure for a given temperature. This is done by iteration, using multivariate Newton-Raphson.
Public methodSaturatedLiquidAndVaporMoleDensitiesAndPressure_FromTemperature(Double, Double, Double, Double) Gets the saturated liquid mole density, the saturated vapor mole density, and the pressure for a given temperature. This is done by iteration, using multivariate Newton-Raphson.
Public methodSaturatedLiquidAndVaporMoleDensitiesAndTemperature_FromPressure Gets the saturated liquid mole density, the saturated vapor mole density, and the temperature for a given pressure. This is done by iteration, using multivariate Newton-Raphson.
Public methodSaturatedLiquidMoleDensityEstimate_FromTemperature Gets an estimate for the saturated liquid mole density in dependence on the temperature.
Public methodSaturatedVaporMoleDensityEstimate_FromTemperature Gets an estimate for the saturated vapor mole density in dependence on the temperature.
Public methodSaturatedVaporPressureEstimate_FromTemperature Gets an estimate for the saturated vapor pressure in dependence on the temperature.
Public methodSaturatedVaporPressureEstimateAndDerivativeWrtTemperature_FromTemperature Gets an estimate for the saturated vapor pressure in dependence on the temperature as well as for the derivative of the saturated vapor pressure with respect to the temperature.
Public methodSaturatedVaporTemperature_FromPressure Get the temperature at the liquid/vapor interface for a given pressure by iteration (Newton-Raphson).
Public methodSpeedOfSound_FromMassDensityAndTemperature Get the speed of sound from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodSpeedOfSound_FromMoleDensityAndTemperature Get the speed of sound from a given density and temperature. Attention - unchecked function: it is presumed, but not checked (!), that the given parameter combination describes a single phase fluid!.
(Inherited from HelmholtzEquationOfState)
Public methodToStringReturns a string that represents the current object.
(Inherited from Object)
Top
See Also