Click or drag to resize

QuickQuadraticRegression Class

Provides a fast, lightweight quadratic (order 2) regression that returns the parameters A0, A1, and A2.
Inheritance Hierarchy
SystemObject
  Altaxo.Calc.RegressionQuickQuadraticRegression

Namespace: Altaxo.Calc.Regression
Assembly: AltaxoCore (in AltaxoCore.dll) Version: 4.8.3448.0 (4.8.3448.0)
Syntax
C#
public class QuickQuadraticRegression

The QuickQuadraticRegression type exposes the following members.

Constructors
 NameDescription
Public methodQuickQuadraticRegressionInitializes a new instance of the QuickQuadraticRegression class
Top
Properties
 NameDescription
Public propertyN Gets the number of entries added.
Top
Methods
 NameDescription
Public methodAdd Adds a data point to the regression.
Public methodAddRange Adds a sequence of data points to the regression.
Public methodAdjustedRSquared Gets the adjusted coefficient of determination (adjusted R²).
Public methodEqualsDetermines whether the specified object is equal to the current object.
(Inherited from Object)
Protected methodFinalizeAllows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object)
Public methodGetA0 Gets the intercept parameter (A0) of the quadratic regression.
Public methodGetA0Error Gets the standard error of parameter A0.
Public methodGetA1 Gets the linear parameter (A1) of the quadratic regression.
Public methodGetA1Error Gets the standard error of parameter A1.
Public methodGetA2 Gets the quadratic parameter (A2) of the quadratic regression.
Public methodGetA2Error Gets the standard error of parameter A2.
Public methodGetConfidenceBand(IEnumerableDouble, Double) Gets the confidence band of the prediction for multiple x values.
Public methodGetConfidenceBand(Double, Double, MatrixDouble) Gets the confidence band of the prediction at the specified x value.
Public methodGetCovarianceMatrix Gets the covariance matrix of the fit parameters.
Public methodGetDeterminant Gets the determinant of the normal-equation system.
Public methodGetHashCodeServes as the default hash function.
(Inherited from Object)
Public methodGetTypeGets the Type of the current instance.
(Inherited from Object)
Public methodGetYErrorOfX Gets the mean prediction error of y at the specified x value.
Public methodGetYOfX Evaluates the fitted quadratic at the specified x value.
Public methodGetYOfXFunction Creates a function that evaluates the fitted quadratic y(x).
Public methodGetYVarianceOfX Gets the prediction variance of y at the specified x value.
Protected methodMemberwiseCloneCreates a shallow copy of the current Object.
(Inherited from Object)
Public methodRSquared Gets the coefficient of determination (R²).
Public methodSigma Gets the estimated standard deviation of the regression.
Public methodSigmaSquared Gets the estimated variance (squared standard deviation) of the regression.
Public methodSumChiSquared Gets the residual sum of squares.
Public methodToStringReturns a string that represents the current object.
(Inherited from Object)
Top
Remarks
This implementation is intended for quick evaluations and uses running sums. Numerical precision is limited; it may not handle very large or very small input values well.
See Also