Click or drag to resize

PoissonDistribution Class

Generates Poisson distributed random numbers.
Inheritance Hierarchy
SystemObject
  Altaxo.Calc.ProbabilityDistribution
    Altaxo.Calc.ProbabilityDiscreteDistribution
      Altaxo.Calc.ProbabilityPoissonDistribution

Namespace: Altaxo.Calc.Probability
Assembly: AltaxoCore (in AltaxoCore.dll) Version: 4.8.3261.0 (4.8.3261.0)
Syntax
C#
public class PoissonDistribution : DiscreteDistribution

The PoissonDistribution type exposes the following members.

Constructors
 NameDescription
Public methodPoissonDistributionInitializes a new instance of the PoissonDistribution class
Public methodPoissonDistribution(Double)Initializes a new instance of the PoissonDistribution class
Public methodPoissonDistribution(Generator)Initializes a new instance of the PoissonDistribution class
Public methodPoissonDistribution(Double, Generator)Initializes a new instance of the PoissonDistribution class
Top
Properties
 NameDescription
Public propertyCanReset Gets a value indicating whether the random number distribution can be reset, so that it produces the same random number sequence again.
(Inherited from Distribution)
Public propertyGenerator Gets or sets a Generator object that can be used as underlying random number generator.
(Inherited from Distribution)
Public propertyMaximum Gets the maximum possible value of poisson distributed random numbers.
(Overrides DistributionMaximum)
Public propertyMean Gets the mean value of poisson distributed random numbers.
(Overrides DistributionMean)
Public propertyMedian Gets the median of poisson distributed random numbers.
(Overrides DistributionMedian)
Public propertyMinimum Gets the minimum possible value of poisson distributed random numbers.
(Overrides DistributionMinimum)
Public propertyMode Gets the mode of poisson distributed random numbers.
(Overrides DistributionMode)
Public propertyVariance Gets the variance of poisson distributed random numbers.
(Overrides DistributionVariance)
Top
Methods
 NameDescription
Public methodCDF(Double)
(Overrides DiscreteDistributionCDF(Double))
Public methodStatic memberCDF(Double, Double) 
Public methodEqualsDetermines whether the specified object is equal to the current object.
(Inherited from Object)
Protected methodFinalizeAllows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object)
Public methodGetHashCodeServes as the default hash function.
(Inherited from Object)
Public methodGetTypeGets the Type of the current instance.
(Inherited from Object)
Public methodInitialize 
Public methodIsValidMu 
Protected methodMemberwiseCloneCreates a shallow copy of the current Object.
(Inherited from Object)
Public methodNextDouble
(Overrides DistributionNextDouble)
Public methodPDF(Double)
(Overrides DiscreteDistributionPDF(Double))
Public methodStatic memberPDF(Double, Double) 
Public methodQuantile
(Overrides DiscreteDistributionQuantile(Double))
Public methodReset Resets the random number distribution, so that it produces the same random number sequence again.
(Inherited from Distribution)
Public methodToStringReturns a string that represents the current object.
(Inherited from Object)
Top
Fields
 NameDescription
Protected fieldalm 
Protected fieldg 
Protected fieldgenerator Stores a Generator object that can be used as underlying random number generator.
(Inherited from Distribution)
Protected fieldm 
Protected fieldscale 
Protected fieldscalepi 
Protected fieldsq 
Top
Remarks
C#
Returns a Poisson distributed deviate (integer returned in a double)
from a distribution of mean m.
The Poisson distribution gives the probability of a certain integer
number m of unit rate Poisson random events occurring in a given
interval of time x.
                                  j  -x
             j+eps               x  e
     integral       p (m) dm  = -------
             j-eps   x            j !

References: The method follows the outlines of:
W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling,
Numerical Recipies in C, Cambridge Univ. Press, 1988.
See Also