Poisson |
public class PoissonDistribution : ProbabilityDistribution
The PoissonDistribution type exposes the following members.
Name | Description | |
---|---|---|
![]() | PoissonDistribution(Double) | Initializes a new instance of the PoissonDistribution class |
![]() | PoissonDistribution(Double, RandomGenerator) | Initializes a new instance of the PoissonDistribution class |
Name | Description | |
---|---|---|
![]() | Generator | Returns the random generator used by the distribution to generate the random values. (Inherited from ProbabilityDistribution) |
Name | Description | |
---|---|---|
![]() | CDF(Double) | (Overrides ProbabilityDistributionCDF(Double)) |
![]() ![]() | CDF(Double, Double) | |
![]() | Equals | Determines whether the specified object is equal to the current object. (Inherited from Object) |
![]() | Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object) |
![]() | GetHashCode | Serves as the default hash function. (Inherited from Object) |
![]() | GetType | Gets the Type of the current instance. (Inherited from Object) |
![]() | Initialize | |
![]() | MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object) |
![]() | NextDouble | (Overrides ProbabilityDistributionNextDouble) |
![]() | PDF(Double) | (Overrides ProbabilityDistributionPDF(Double)) |
![]() ![]() | PDF(Double, Double) | |
![]() | Quantile | (Overrides ProbabilityDistributionQuantile(Double)) |
![]() | ToString | Returns a string that represents the current object. (Inherited from Object) |
Name | Description | |
---|---|---|
![]() | alm | |
![]() | g | |
![]() | generator | Pointer to generator. (Inherited from ProbabilityDistribution) |
![]() | m | |
![]() | scale | |
![]() | scalepi | |
![]() | sq |
Returns a Poisson distributed deviate (integer returned in a double) from a distribution of mean m. The Poisson distribution gives the probability of a certain integer number m of unit rate Poisson random events occurring in a given interval of time x. j -x j+eps x e integral p (m) dm = ------- j-eps x j ! References: The method follows the outlines of: W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipies in C, Cambridge Univ. Press, 1988.