Click or drag to resize

BinomialDistribution Class

Generates Binomial distributed random numbers.
Inheritance Hierarchy
SystemObject
  Altaxo.Calc.ProbabilityDistribution
    Altaxo.Calc.ProbabilityDiscreteDistribution
      Altaxo.Calc.ProbabilityBinomialDistribution

Namespace: Altaxo.Calc.Probability
Assembly: AltaxoCore (in AltaxoCore.dll) Version: 4.8.3261.0 (4.8.3261.0)
Syntax
C#
public class BinomialDistribution : DiscreteDistribution

The BinomialDistribution type exposes the following members.

Constructors
 NameDescription
Public methodBinomialDistributionInitializes a new instance of the BinomialDistribution class
Public methodBinomialDistribution(Generator)Initializes a new instance of the BinomialDistribution class
Public methodBinomialDistribution(Int32, Double)Initializes a new instance of the BinomialDistribution class
Public methodBinomialDistribution(Int32, Double, Generator)Initializes a new instance of the BinomialDistribution class
Top
Properties
 NameDescription
Public propertyCanReset Gets a value indicating whether the random number distribution can be reset, so that it produces the same random number sequence again.
(Inherited from Distribution)
Public propertyGenerator Gets or sets a Generator object that can be used as underlying random number generator.
(Inherited from Distribution)
Public propertyMaximum Gets the maximum possible value of binomial distributed random numbers.
(Overrides DistributionMaximum)
Public propertyMean Gets the mean value of binomial distributed random numbers.
(Overrides DistributionMean)
Public propertyMedian Gets the median of binomial distributed random numbers.
(Overrides DistributionMedian)
Public propertyMinimum Gets the minimum possible value of binomial distributed random numbers.
(Overrides DistributionMinimum)
Public propertyMode Gets the mode of binomial distributed random numbers.
(Overrides DistributionMode)
Public propertyNumber Gets the parameter 'maximum value' of this distribution.
Public propertyProbability Gets the parameter 'probability' of this distribution.
Public propertyVariance Gets the variance of binomial distributed random numbers.
(Overrides DistributionVariance)
Top
Methods
 NameDescription
Public methodCDF(Double)
(Overrides DiscreteDistributionCDF(Double))
Public methodStatic memberCDF(Double, Double, Int32) 
Public methodEqualsDetermines whether the specified object is equal to the current object.
(Inherited from Object)
Protected methodFinalizeAllows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object)
Public methodGetHashCodeServes as the default hash function.
(Inherited from Object)
Public methodGetTypeGets the Type of the current instance.
(Inherited from Object)
Protected methodInitialize 
Protected methodMemberwiseCloneCreates a shallow copy of the current Object.
(Inherited from Object)
Public methodNextDouble
(Overrides DistributionNextDouble)
Public methodPDF(Double)
(Overrides DiscreteDistributionPDF(Double))
Public methodStatic memberPDF(Double, Double, Int32) 
Public methodQuantile
(Overrides DiscreteDistributionQuantile(Double))
Public methodReset Resets the random number distribution, so that it produces the same random number sequence again.
(Inherited from Distribution)
Public methodToStringReturns a string that represents the current object.
(Inherited from Object)
Top
Fields
 NameDescription
Protected fielden 
Protected fielden1 
Protected fieldgamen1 
Protected fieldgenerator Stores a Generator object that can be used as underlying random number generator.
(Inherited from Distribution)
Protected fieldn 
Protected fieldnp 
Protected fieldnpexp 
Protected fieldp 
Protected fieldpc 
Protected fieldpclog 
Protected fieldplog 
Protected fieldscale 
Protected fieldscalepi 
Protected fieldsq 
Protected fieldsym 
Top
Remarks
C#
Returns a binomial distributed deviate (integer returned in a double)
according to the distribution:

             j+eps                 / n \    j      n-j
     integral       p   (m) dm  = |     |  q  (1-q)
             j-eps   n,q           \ j /

References:
D. E. Knuth: The Art of Computer Programming, Vol. 2, Seminumerical
Algorithms, pp. 120, 2nd edition, 1981.
                            // 
W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling,
Numerical Recipies in C, Cambridge Univ. Press, 1988.
See Also