Click or drag to resize

ExponentialSpline Class

Exponential Splines.
Inheritance Hierarchy
SystemObject
  Altaxo.Calc.InterpolationCurveBase
    Altaxo.Calc.InterpolationExponentialSpline

Namespace: Altaxo.Calc.Interpolation
Assembly: AltaxoCore (in AltaxoCore.dll) Version: 4.8.3448.0 (4.8.3448.0)
Syntax
C#
public class ExponentialSpline : CurveBase, 
	IInterpolationFunction, IInterpolationCurve

The ExponentialSpline type exposes the following members.

Constructors
 NameDescription
Public methodExponentialSpline Initializes a new instance of the ExponentialSpline class with default boundary conditions and smoothing.
Top
Properties
 NameDescription
Public propertyBoundaryCondition Gets or sets the boundary condition mode used for spline interpolation.
Public propertySmoothing Gets or sets the smoothing parameter that controls the spline tension.
Top
Methods
 NameDescription
Public methodCubicSplineCoefficients Calculate the spline coefficients y2(i) and y3(i) for a natural cubic spline, given the abscissa x(i), the ordinate y(i), and the 1st derivative y1(i).
(Inherited from CurveBase)
Public methodCubicSplineHorner Return the interpolation value P(u) for a piecewise cubic curve determined by the abscissa vector x, the ordinate vector y, and derivative coefficient vectors y1, y2, and y3, using the Horner scheme.
(Inherited from CurveBase)
Public methodCubicSplineHorner1stDerivative Return the first derivative P'(u) of the piecewise cubic curve evaluated using Horner's scheme.
(Inherited from CurveBase)
Public methodEqualsDetermines whether the specified object is equal to the current object.
(Inherited from Object)
Protected methodFinalizeAllows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object)
Public methodGetBoundaryConditions Gets the current boundary condition configuration along with endpoint derivatives.
Public methodGetCurvePoints Get curve points to draw an interpolation curve between the abscissa values xlo and xhi. It calls the virtual methods MpCurveBase::GetXOfU() and GetYOfU() to obtain the interpolation values. Note, that before method DrawCurve() can be called the method Interpolate() must have been called. Otherwise, not interpolation is available.
(Inherited from CurveBase)
Public methodGetHashCodeServes as the default hash function.
(Inherited from Object)
Public methodGetTypeGets the Type of the current instance.
(Inherited from Object)
Public methodGetXOfU Get the abscissa value in dependence on parameter u.
(Overrides CurveBaseGetXOfU(Double))
Public methodGetYOfU Gets the ordinate value on dependence on parameter u.
(Overrides CurveBaseGetYOfU(Double))
Public methodGetYOfX Returns the y value in dependence of a given x value.
Public methodInterpolate Interpolates a curve using abcissa x and ordinate y.
(Overrides CurveBaseInterpolate(IReadOnlyListDouble, IReadOnlyListDouble))
Protected methodMemberwiseCloneCreates a shallow copy of the current Object.
(Inherited from Object)
Public methodParametrize Curve length parametrization. Returns the accumulated "distances" between the points (x(i),y(i)) and (x(i+1),y(i+1)) in t(i+1) for i = lo ... hi. t(lo) = 0.0 always.
(Inherited from CurveBase)
Public methodSetBoundaryConditions Sets the boundary conditions and any supplied endpoint derivatives.
Public methodToStringReturns a string that represents the current object.
(Inherited from Object)
Top
Fields
 NameDescription
Protected fieldboundary 
Protected fieldr1 
Protected fieldr2 
Protected fieldsigma 
Protected fieldtmp 
Protected fieldxReference to the vector of the independent variable.
(Inherited from CurveBase)
Protected fieldyReference to the vector of the dependent variable.
(Inherited from CurveBase)
Protected fieldy1 
Top
Remarks
C#
References:
-----------
(1) D.G. Schweikert, "An Interpolation Curve using a Spline in Tension"
    J. Math. Physics, 45, pp 312-317 (1966).
(2) Dr.rer.nat. Helmuth Spaeth,
    "Spline-Algorithmen zur Konstruktion glatter Kurven und Flaechen",
    3. Auflage, R. Oldenburg Verlag, Muenchen, Wien, 1983.
(3) A. K. Cline, Commun. of the ACM, 17, 4, pp 218-223 (Apr 1974).
(4) This algorithm is also implemented in the Unix spline tool by
    James R. Van Zandt (jrv@mitre-bedford), 1985.
See Also