Click or drag to resize

MassChangeAfterStepForSphere Class

Describes the mass change of a sphere (with given radius) in a diffusion process after a concentration step change.
Inheritance Hierarchy
SystemObject
  Altaxo.Calc.FitFunctions.DiffusionMassChangeAfterStepForSphere

Namespace: Altaxo.Calc.FitFunctions.Diffusion
Assembly: AltaxoCore (in AltaxoCore.dll) Version: 4.8.3448.0 (4.8.3448.0)
Syntax
C#
public class MassChangeAfterStepForSphere : IFitFunction, 
	IFitFunctionWithDerivative, IImmutable, IEquatable<MassChangeAfterStepForSphere>

The MassChangeAfterStepForSphere type exposes the following members.

Constructors
 NameDescription
Public methodMassChangeAfterStepForSphereInitializes a new instance of the MassChangeAfterStepForSphere class
Top
Properties
 NameDescription
Public propertyDiameter Diameter of the sphere. The default value is 2. The resulting diffusion coefficent is then in units of the square of the diameter unit by the time unit that is used by the fit.
Public propertyNumberOfDependentVariables Number of dependent variables (i.e. y, in Altaxo this is commonly called v (like value)).
Public propertyNumberOfIndependentVariables Number of independent variables (i.e. x).
Public propertyNumberOfParameters Number of parameters of this fit function.
Public propertyRadius Radius of the sphere. The default value is 1. The resulting diffusion coefficent is then in units of the square of the radius unit by the time unit that is used by the fit.
Top
Methods
 NameDescription
Public methodStatic memberCreate Creates the default fit function describing the mass change of a sphere after a concentration step.
Public methodDefaultParameterValue Returns a default parameter value. You must ensure that the fit function would generate values with those default parameters.
Public methodDefaultVarianceScaling Returns the default variance scaling for the dependent variable i.
Public methodDependentVariableName Returns the ith dependent variable name.
Public methodEvaluate(Double, Double, Double) This evaluates a function value.
Public methodEvaluate(IROMatrixDouble, IReadOnlyListDouble, IVectorDouble, IReadOnlyListBoolean) Evaluates the function values at multiple x-points.
Public methodStatic memberEvaluate(Double, Double, Double, Double, Double, Double) Evaluates the mass change for the given time and parameters: M(t) = M0 + ΔM * unitstep(D*(t - t0)/d^2)
Public methodEvaluateDerivative Evaluates the gradient of the function with respect to the parameters.
Public methodStatic memberEvaluateUnitStep Evaluates the response of a unit step (M0 = 0, ΔM = 1) at t0 = 0.
Public methodStatic memberEvaluateUnitStepAndDerivativesWrtReducedVariable Evaluates the response of a unit step in dependence of the reduced variables.
Public methodStatic memberEvaluateUnitStepWrtReducedVariable Evaluates the response of a unit step in dependence of the reduced variable.
Protected methodFinalizeAllows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object)
Public methodGetParameterBoundariesHardLimit Gets the parameter boundaries that are really a hard limit, i.e. outside those limits, the function would probably evaluate NaN values, or makes no sense.
Public methodGetParameterBoundariesSoftLimit Gets the intended parameter boundaries. This are soft limits, boundaries so that the intended purpose of the fit function is fullfilled. Example: in the exponential decay Exp(-a*t) a is intended to be positive. This is a soft limit, and not a hard limit, because a could be also negative, and the fit nevertheless would succeed.
Public methodGetTypeGets the Type of the current instance.
(Inherited from Object)
Public methodIndependentVariableName Returns the ith independent variable name.
Protected methodMemberwiseCloneCreates a shallow copy of the current Object.
(Inherited from Object)
Public methodParameterName Returns the ith parameter name.
Top
Events
 NameDescription
Public eventChanged Occurs when the fit function changed, including number or name of parameters, independent variables, dependent variables, or the scaling.
Top
Remarks
Ref: Crank, "The Mathematics of Diffusion", 2nd edition, 1975, Oxford University Press.
See Also