Complex |
public class ComplexErrorFunctionRelated
The ComplexErrorFunctionRelated type exposes the following members.
Name | Description | |
---|---|---|
ComplexErrorFunctionRelated | Initializes a new instance of the ComplexErrorFunctionRelated class |
Name | Description | |
---|---|---|
CDawson | Dawson's integral D(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z). | |
Cerf | Complex error function. | |
Cerfc | The complex complementary error function cerfc(z) = 1 - cerf(z). | |
Cerfcx | The underflow-compensating function cerfcx(z) = exp(z^2)*cerfc(z). | |
Cerfi | The imaginary error function cerfi(z) = -i cerf(iz). | |
Dawson | Dawson's integral D(x) = sqrt(pi)/2 * exp(-x^2) * erfi(x) for real values. | |
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object) | |
Erfcx | The underflow-compensating function erfcx(x) = exp(x^2)*erfc(x) for real arguments. | |
Erfi | The imaginary error function erfi(x) = -i cerf(ix). | |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object) | |
GetHashCode | Serves as the default hash function. (Inherited from Object) | |
GetType | Gets the Type of the current instance. (Inherited from Object) | |
Im_w_of_z | Faddeeva's scaled complex error function w(z) = exp(-z^2) erfc(-iz), returning the purely imaginary result as a real number. | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object) | |
Re_w_of_z | Faddeeva's scaled complex error function w(z) = exp(-z^2) erfc(-iz), returning the real part of the result as a real number. | |
ToString | Returns a string that represents the current object. (Inherited from Object) | |
Voigt | The convolution of a Gaussian and a Lorentzian probability density function. | |
VoigtHalfWidthHalfMaximum | The half width at half maximum of the Voigt(Double, Double, Double) profile. | |
VoigtHalfWidthHalfMaximumApproximation | An approximation formula for the half width at half maximum of the Voigt(Double, Double, Double) profile. The maximal relative error is 0.0216%. The error is vanishing in the limiting cases sigma>>gamma and gamma>>sigma. | |
W_of_z | Faddeeva's scaled complex error function w(z) = exp(-z^2) erfc(-iz). |
Name | Description | |
---|---|---|
VoigtHalfWidthHalfMaximumApproximationMaximalRelativeError | Gets the maximal relative error of the VoigtHalfWidthHalfMaximumApproximation(Double, Double). |
Citation:
S. G. Johnson, J. Wuttke: libcerf, numeric library for complex error functions, see https://jugit.fz-juelich.de/mlz/libcerf.
Most function evaluations in this library rely on Faddeeva's function w(z). This function has been reimplemented from scratch by Steven G.Johnson; project web site http://ab-initio.mit.edu/Faddeeva. The implementation partly relies on algorithms from the following publications:
References:
Walter Gautschi, Efficient computation of the complex error function, SIAM J. Numer. Anal. 7, 187 (1970).
G. P. M. Poppe and C. M. J. Wijers, More efficient computation of the complex error function, ACM Trans. Math. Soft. 16, 38 (1990).
Mofreh R. Zaghloul and Ahmed N. Ali, Algorithm 916: Computing the Faddeyeva and Voigt Functions, ACM Trans. Math. Soft. 38, 15 (2011).