Linear |
The LinearFitBySvd type exposes the following members.
| Name | Description | |
|---|---|---|
| AdjustedRSquared | Gives the adjusted coefficient of determination. | |
| ConditionNumber | Gets the condition number. | |
| Covariances | Gets the variance-covariance matrix of the fitted parameters. | |
| EstimatedVariance | Gets the estimated residual mean square (also called sigma square). | |
| NumberOfData | Gets the number of data points used by the fit. | |
| NumberOfParameter | Gets the number of parameters of the fit. | |
| Parameter | Gets the fitted parameters such that y = Σ(parameter[i] * functionBase[i]). | |
| PredictedValues | Gets the predicted dependent values ŷ[i]. | |
| RegressionCorrectedSumOfSquares | Gets the regression corrected sum of squares, i.e. Σ(ŷi - ȳ)^2. | |
| ResidualSumOfSquares | Gets the residual sum of squares (RSS) of the fit, i.e. Σ(yi - ŷi)^2. | |
| ResidualValues | Gets the residual values defined as y[i] - ŷ[i]. | |
| RSquared | Gets the coefficient of determination (R²). | |
| Sigma | Gets the standard error of regression. | |
| TotalCorrectedSumOfSquares | Gets the total corrected sum of squares of y, i.e. Σ(yi - ȳ)^2. |