Click or drag to resize

LinearFitBySvd Properties

The LinearFitBySvd type exposes the following members.

Properties
 NameDescription
Public propertyAdjustedRSquaredGives the adjusted coefficient of determination.
Public propertyConditionNumber Gets the condition number.
Public propertyCovariances Gets the variance-covariance matrix of the fitted parameters.
Public propertyEstimatedVariance Gets the estimated residual mean square (also called sigma square).
Public propertyNumberOfData Gets the number of data points used by the fit.
Public propertyNumberOfParameter Gets the number of parameters of the fit.
Public propertyParameter Gets the fitted parameters such that y = Σ(parameter[i] * functionBase[i]).
Public propertyPredictedValues Gets the predicted dependent values ŷ[i].
Public propertyRegressionCorrectedSumOfSquares Gets the regression corrected sum of squares, i.e. Σ(ŷi - ȳ)^2.
Public propertyResidualSumOfSquares Gets the residual sum of squares (RSS) of the fit, i.e. Σ(yi - ŷi)^2.
Public propertyResidualValues Gets the residual values defined as y[i] - ŷ[i].
Public propertyRSquared Gets the coefficient of determination (R²).
Public propertySigma Gets the standard error of regression.
Public propertyTotalCorrectedSumOfSquares Gets the total corrected sum of squares of y, i.e. Σ(yi - ȳ)^2.
Top
See Also