Special |
KelvinKe(nu, x) is given by Exp(-nu * pi * j / 2) * BesselK(nu, x * sqrt(j)) where j = sqrt(-1).
KelvinKer(nu, x) and KelvinKei(nu, x) are the real and imaginary parts of the KelvinBe(nu, x)
public static Complex KelvinKe( double nu, double x )
[Missing <returns> documentation for "M:Altaxo.Calc.SpecialFunctions.KelvinKe(System.Double,System.Double)"]