MultipleRegressionDirectMethodT(IEnumerableTupleT, T, Boolean, DirectRegressionMethod) Method |
Find the model parameters β such that their linear combination with all predictor-arrays in X become as close to their response in Y as possible, with least squares residuals.
Uses the cholesky decomposition of the normal equations.
Namespace: Altaxo.Calc.LinearRegressionAssembly: AltaxoCore (in AltaxoCore.dll) Version: 4.8.3179.0 (4.8.3179.0)
Syntax public static T[] DirectMethod<T>(
IEnumerable<Tuple<T[], T>> samples,
bool intercept = false,
DirectRegressionMethod method = DirectRegressionMethod.NormalEquations
)
where T : struct, new(), IEquatable<T>, IFormattable
Parameters
- samples IEnumerableTupleT, T
- Sequence of predictor-arrays and their response.
- intercept Boolean (Optional)
- True if an intercept should be added as first artificial predictor value. Default = false.
- method DirectRegressionMethod (Optional)
- The direct method to be used to compute the regression.
Type Parameters
- T
[Missing <typeparam name="T"/> documentation for "M:Altaxo.Calc.LinearRegression.MultipleRegression.DirectMethod``1(System.Collections.Generic.IEnumerable{System.Tuple{``0[],``0}},System.Boolean,Altaxo.Calc.LinearRegression.DirectRegressionMethod)"]
Return Value
TBest fitting list of model parameters β for each element in the predictor-arrays.
See Also